dynamic nuclear magnetic resonance - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

dynamic nuclear magnetic resonance - vertaling naar russisch

Earth's field nuclear magnetic resonance

dynamic nuclear magnetic resonance      

общая лексика

динамический ядерный магнитный резонанс

динамический ЯМР

NMR spectroscopy         
  • −CH<sub>2</sub>−]] hydrogens are coupling with each other, resulting in a triplet and quartet respectively.
  • A 200 MHz NMR instrument with a 4.7 T magnet at CEMHTI-CNRS, Orléans, France.
  • access-date=7 December 2018}}</ref>
  • Example of the chemical shift: NMR spectrum of hexaborane B<sub>6</sub>H<sub>10</sub> showing peaks shifted in frequency, which give clues as to the molecular structure. (click to read interpretation details)
  • <sup>1</sup>H NMR spectrum of [[menthol]] with [[chemical shift]] in ppm on the horizontal axis. Each magnetically inequivalent proton has a characteristic shift, and couplings to other protons appear as splitting of the peaks into multiplets: e.g. peak ''a'', because of the three magnetically equivalent protons in methyl group ''a'', couple to one adjacent proton (''e'') and thus appears as a doublet.
  • The NMR sample is prepared in a thin-walled glass tube - an [[NMR tube]].
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
NMR Spectroscopy; Magnetic resonance spectroscopy; NMR spectrum; NMR spec; NMR Spec; NMR spectra; Nuclear Magnetic Resonance spectroscopy; NMR spectrometer; Nuclear Magnetic Resonance spectrometry; Nuclear Magnetic Resonance Spectroscopy; NMR spectroscopy; Nuclear magnetic resonance (NMR) spectroscopy; Li NMR spectroscopy; Proton Magnetic Resonance Spectroscopy; Proton magnetic resonance spectroscopy; NMR shift

общая лексика

ядерная магнитно-резонансная спектроскопия

ЯМР-спектроскопия

синоним

nuclear magnetic resonance spectroscopy

magnetic resonance spectroscopy         
  • −CH<sub>2</sub>−]] hydrogens are coupling with each other, resulting in a triplet and quartet respectively.
  • A 200 MHz NMR instrument with a 4.7 T magnet at CEMHTI-CNRS, Orléans, France.
  • access-date=7 December 2018}}</ref>
  • Example of the chemical shift: NMR spectrum of hexaborane B<sub>6</sub>H<sub>10</sub> showing peaks shifted in frequency, which give clues as to the molecular structure. (click to read interpretation details)
  • <sup>1</sup>H NMR spectrum of [[menthol]] with [[chemical shift]] in ppm on the horizontal axis. Each magnetically inequivalent proton has a characteristic shift, and couplings to other protons appear as splitting of the peaks into multiplets: e.g. peak ''a'', because of the three magnetically equivalent protons in methyl group ''a'', couple to one adjacent proton (''e'') and thus appears as a doublet.
  • The NMR sample is prepared in a thin-walled glass tube - an [[NMR tube]].
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
NMR Spectroscopy; Magnetic resonance spectroscopy; NMR spectrum; NMR spec; NMR Spec; NMR spectra; Nuclear Magnetic Resonance spectroscopy; NMR spectrometer; Nuclear Magnetic Resonance spectrometry; Nuclear Magnetic Resonance Spectroscopy; NMR spectroscopy; Nuclear magnetic resonance (NMR) spectroscopy; Li NMR spectroscopy; Proton Magnetic Resonance Spectroscopy; Proton magnetic resonance spectroscopy; NMR shift

медицина

магнитно-резонансная спектроскопия

Definitie

Магнитная лента

носитель магнитной записи (См. Магнитная запись), представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства М. л. характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная М. л. с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (γ-Fe2O3), двуокиси хрома (CrO2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи. В 1973 фирмой "Филипс" (Нидерланды) разработан высококачественный порошок с очень мелкими игольчатыми частицами железа. В качестве основы М. л. используются полиэтилентелефталатная (лучшая), поливинилхлоридная, ди- и триацетатная плёнки. Рабочий слой наносится на основу в виде магнитного лака, состоящего из магнитного порошка, связующего вещества, растворителя, пластификатора и различных добавок, улучшающих качество М. л. После нанесения магнитного лака и его затвердевания М. л. сматывается в рулоны, а затем разрезается на полосы нужной ширины. Для улучшения качества поверхности рабочего слоя М. л. каландрируют или полируют. М. л. желательно хранить в помещении с кондиционированным и обеспыленным воздухом при температуре 20 ± 5 °С и относительной влажности 60 ± 5\%. Для работы в особо тяжёлых климатических условиях применяют металлические или биметаллические М. л.

Ширина и толщина М. л. зависят от её назначения. В звукозаписи (См. Звукозапись) используют М. л. шириной 3,81 и 6,25 мм и толщиной 9, 12, 18, 27,37 и 55 мкм (кассетные и катушечные бытовые Магнитофоны, студийные магнитофоны). Видеозапись осуществляется на М. л. шириной 50,8 и 25,4 мм и толщиной 37 мкм (студийные Видеомагнитофоны), 6,25 и 12,7 мм при толщине 37 мкм (бытовые видеомагнитофоны). В запоминающих устройствах применяют М. л. шириной 12,7 мм и толщиной 37 мкм (в ЭВМ первого "поколения" использовались также М. л. шириной 19,05 и 35 мм при толщине свыше 50 мкм). В измерительной аппаратуре применяются М. л. шириной 6,25 мм и толщиной 18 мкм, а также 12,7 и 25,4 мм и толщиной 37 мкм. В кино используют перфорированные М. л. шириной 35 мм и толщиной 150 мкм. В СССР тип М. л. обозначается комбинацией из пяти элементов: первый элемент - буква, обозначает назначение (например, А - звукозапись; Т - видеозапись и так далее); второй элемент - цифра (от 0 до 9), указывает на материал основы; третий элемент - цифра (от 0 до 9), обозначает толщину М. л. (например, 2 - 18 мкм; 3 - 27 мкм и т.д.); четвёртый элемент - цифра (от 01 до 99), обозначает технологическую разработку; пятый элемент - ширина М. л. в мм. Иногда ставят шестой дополнительный буквенный индекс: П - для перфорированных М. л.; Р - для М. л. к студийным магнитофонам; Б - для М. л. к бытовым магнитофонам. Например, А-4402-6 обозначает М. л. для звукозаписи на лавсановой основе, толщиной 37 мкм, шириной 6,25 мм (технологическая разработка - 02).

Разрабатываются металлизированные М. л. с тонким рабочим слоем из сплавов Со-Ni, Со-Р, Со-N-Р и Со-W, нанесённым электроосаждением, химическим восстановлением или напылением в вакууме.

Лит.: Мазо Я. А., Магнитная лента, М., 1968; Каган Б. М., Адасько В. И., Пурэ Р. Р., Запоминающие устройства большой емкости, М., 1968.

Я. А. Мазо, Д. П. Брунштейн.

Wikipedia

Earth's field NMR

Nuclear magnetic resonance (NMR) in the geomagnetic field is conventionally referred to as Earth's field NMR (EFNMR). EFNMR is a special case of low field NMR.

When a sample is placed in a constant magnetic field and stimulated (perturbed) by a time-varying (e.g., pulsed or alternating) magnetic field, NMR active nuclei resonate at characteristic frequencies. Examples of such NMR active nuclei are the isotopes carbon-13 and hydrogen-1 (which in NMR is conventionally known as proton NMR). The resonant frequency of each isotope is directly proportional to the strength of the applied magnetic field, and the magnetogyric or gyromagnetic ratio of that isotope. The signal strength is proportional both to the stimulating magnetic field and the number of nuclei of that isotope in the sample. Thus in the 21 tesla magnetic field that may be found in high resolution laboratory NMR spectrometers, protons resonate at 900 MHz. However, in the Earth's magnetic field the same nuclei resonate at audio frequencies of around 2 kHz and generate very weak signals.

The location of a nucleus within a complex molecule affects the 'chemical environment' (i.e. the rotating magnetic fields generated by the other nuclei) experienced by the nucleus. Thus different hydrocarbon molecules containing NMR active nuclei in different positions within the molecules produce slightly different patterns of resonant frequencies.

EFNMR signals can be affected by both magnetically noisy laboratory environments and natural variations in the Earth's field, which originally compromised its usefulness. However this disadvantage has been overcome by the introduction of electronic equipment which compensates changes in ambient magnetic fields.

Whereas chemical shifts are important in NMR, they are insignificant in the Earth's field. The absence of chemical shifts causes features such as spin-spin multiplets (that are separated by high fields) to be superimposed in EFNMR. Instead, EFNMR spectra are dominated by spin-spin coupling (J-coupling) effects. Software optimised for analysing these spectra can provide useful information about the structure of the molecules in the sample.

Vertaling van &#39dynamic nuclear magnetic resonance&#39 naar Russisch